tclean: CASA task for Radio Interferometric Image Reconstruction

CASA <x>: inp</x>	tclean	
vis	= ''	# N
selectdata	= True	
specmode	= 'mfs'	
• • •		
gridder	= 'standard	'
• • •		
deconvolver	= 'hogbom'	:
• • •		
weighting	= 'natural'	
niter	= 0	
usemask	= 'user'	

- ame of input visibility file(s) # Enable data selection parameters
- # Spectral definition mode
- # Gridding options
- # Minor cycle algorithm
 - # Weighting scheme
- # Maximum number of iterations
- # Type of mask(s) for deconvolution

Before you clean: Imaging Preparation

Inspect your data 1.

- **Inspect the weblog** see I-TRAIN #4: ALMA WebLog inspection a.
- **b.** listobs: spw & field information
- c. plotms: check uv coverage, check for spectral lines, telluric lines, etc.

2. Prepare your measurement set

- If needed, split science source from calibrated measurement set(s) a.
- If continuum imaging, optional: split out continuum-only MS b.

Resources:

ALMAGuides & General Imaging Tutorials: <u>casaguides.nrao.edu</u> Video tutorial on imaging: <u>https://youtu.be/yuLKAfroHu4</u>

If line imaging: uv continuum subtraction with uvcontsub if continuum > 3 sigma per channel

Material preparation & Let's launch CASA!

In YOUR analysis directory (analysis/USERNAME/): mkdir imaging cd imaging cp -r ./././scripts/Imaging_*.py ./

(you can copy below from the script "Imaging_1_basic.py") cp -r ../../archive/DRT2023/TW_hydra/sis14_twhya_calibrated_flagged.ms.contsub/ ./

nice +10 env -u PYTHONPATH -u LD_LIBRARY_PATH casapy-660

Scripts involved in this tutorial:

```
(a) Imaging_1_basic.py - setting up all tclean parameter in interactive style
(b) Imaging_2_basic_scripted.py - scripted version of (a)
(c) Imaging_3_uvcontsub.py - basic steps to perform continuum subtraction
(d) Imaging_4_uvtaper_scripted.py - tclean script including tapering specification (uvtaper and the associated parameters)
```


tclean: data selection

CASA <x>: inp tclean</x>	
vis	<pre>= 'sis14_twhy</pre>
selectdata	= True
field	= 'TW Hya'
spw	= '0'
timerange	= ''
uvrange	= ''
antenna	= ''
scan	= ''
observation	= ''
intent	= ''

Or go to casa documentation: <u>https://casadocs.readthedocs.io/en/stable/api/tt/casatasks.imaging.tclean.html</u>

• • •

va_calibrated_flagged.ms.contsub'

- # Enable data selection parameters
 - # field(s) to select
- # spw(s)/channels to select
- # Range of time to select from data
- # Select data within uvrange
- # Select data based on antenna/baseline
- # Scan number range
- # Observation ID range
- # Scan Intent(s)

tclean: get spw & field information from listobs

- CASA <x>: vis = 'sis14 twhya calibrated flagged.ms.contsub'
- CASA <x>: listobs(vis)
- CASA <x>: listobs(vis, listfile='listobs.txt')

View listobs output in logger or in file Information includes:

Observation information (time, field observed, intents) Field information (field IDs, coordinates) Spectral window information (spw IDs, frequencies, bandwidth, spectral resolution) Antenna information (Names, stations, dish diameter, coordinates)

tclean:get spw & field information from listobs

Output:

MeasurementSet Name: /yourDirectory/sis14_twhya_calibrated_flagged.ms.contsub Project: uid://A002/X327408/X6f Observer: cqi Observation: ALMA Data records: 53161 Total elapsed time = 4268.11 seconds Observed from 19-Nov-2012/07:56:23.5 to 19-Nov-2012/09:07:31.6 (UTC) ArrayID = 0ObservationID = 0Timerange (UTC) Date Scan FldId FieldName 19-Nov-2012/07:56:23.5 - 08:02:11.3 12 0 TW Hya 08:08:09.6 - 08:13:57.3 0 TW Hya 16 08:19:53.9 - 08:25:41.70 TW Hya 20 08:32:00.5 - 08:37:48.2 24 0 TW Hya 08:43:45.6 - 08:49:33.4 28 0 TW Hya 09:05:15.6 - 09:07:31.6 36 0 TW Hya (nRows = Total number of rows per scan) Fields: 1 Code Name ID RA Decl Epoch 11:01:51.796000 -34.42.17.36600 J2000 0 none TW Hya Spectral Windows: (1 unique spectral windows and 1 unique polarizatio SpwID Name #Chans Frame Ch0(MHz) Cha ALMA RB 07#BB 2#SW-01#FULL_RES 384 ТОРО 372533.086 0

MS Version 2

nRows	SpwIc	is Ave	erage Inte	erval(s)	ScanIntent
8514	[0]	[6.05]	[OBSERVE	TARGET#ON_	SOURCE]
10360	[0]	[6.05]	[OBSERVE	TARGET#ON	SOURCE]
10321	[0]	[6.05]	[OBSERVE	TARGET#ON	SOURCE]
10324	[0]	[6.05]	[OBSERVE	TARGET#ON	SOURCE]
9462	[0]	[6.05]	[OBSERVE	TARGET#ON	SOURCE]
4180	[0]	[6.05]	[OBSERVE	TARGET#ON	SOURCE]

	SrcId	nRows					
	0	53161					
n	setups)						
anI	Wid(kHz)	TotBW(kHz)	CtrFreq(MHz)	BBC	Num	Cor	rs
	610.352	234375.0	372649.9688		2	XX	YY

tclean: get spw & field information from listobs

Output:

MeasurementSet Name: /yourDirectory/sis14 twhya calibrated flagged.ms.contsub

Project: uid://A002/X327408/X6f Observer: cqi **Observation:** ALMA Total elapsed time = 4268.11 seconds Data records: 53161 19-Nov-2012/07:56:23.5 to 19-Nov-2012/09:07:31.6 (UTC) Observed from ArrayID = 0ObservationID = 0Scan FldId FieldName Timerange (UTC) Date 19 - Nov - 2012/07:56:23.5 - 08:02:11.312 0 TW Hya 08:08:09.6 - 08:13:57.3 0 TW Hya 16 08:19:53.9 - 08:25:41.7 0 TW Hya 08:32:00.5 - 08:37:48.2 24 0 TW Hya 08:43:45.6 - 08:49:33.4 28 0 TW Hya 09:05:15.6 - 09:07:31.6 0 TW Hya (nRows = Total number of rows per scan)Fields: 1 ID Code Name RA Epoch Decl 11:01:51.796000 -34.42.17.36600 J2000 none TW Hya 0 Spectral Windows: (1 unique spectral windows and 1 unique polarizati SpwID Ch0(MHz) Ch Name #Chans Frame ALMA_RB_07#BB_2#SW-01#FULL_RES 372533.086 384 TOPO 0

ad flagged ms conts

MS Version 2

nRows	SpwId	s Ave	erage In	terval(s)	ScanIntent
8514	[0]	[6.05]	[OBSERV	E_TARGET#ON	SOURCE]
10360	[0]	[6.05]	[OBSERV	E TARGET#ON	SOURCE]
10321	[0]	[6.05]	[OBSERV	E TARGET#ON	SOURCE]
10324	[0]	[6.05]	[OBSERV	E TARGET#ON	SOURCE]
9462	[0]	[6.05]	[OBSERV	E TARGET#ON	SOURCE]
4180	[0]	[6.05]	[OBSERV	E_TARGET#ON	SOURCE]

L	SrcId	nRows					
)	0	53161					
.on	setups)						
anV	Nid(kHz)	TotBW(kHz)	CtrFreq(MHz)	BBC	Num	Cor	rs
	610.352	234375.0	372649.9688		2	XX	YY

tclean: image parameters

CASA <x>: inp tclean

\bullet \bullet \bullet	
datacolumn	= 'data'
imagename	= 'twhya_n
imsize	$= [240, 2\overline{4}0]$
cell	= '0.1arcse
phasecenter	= 0
stokes	= 'I'
projection	= 'SIN'
startmodel	= ''

• • •

2hp43')] sec'

- # Data column
- # Pre-name of output images
- # Number of pixels
- # Cell size
- # Phase center of the image
- # Stokes Planes to make
- # Coordinate projection
- # Name of starting model

synthesized into a single image using synthesis), i.e. continuum imaging

N DATA CHANNELS

Figures from CASA Docs

For this tutorial, we use:

CASA <x>: specmode = 'cube'

nchan, start, and width can be in terms of channel number, frequency, or velocity CASA $\langle x \rangle$: nchan = 30 CASA $\langle x \rangle$: start = 230 CASA $\langle x \rangle$: width = 1

for *z<0.2*, can use rest frequency of line (look up with e.g. Splatalogue) CASA <x>: restfreq = '372.67250900GHz' # N2H+ J=4-3

Set velocity parameters: CASA <x>: outframe = 'lsrk' # LSR as a kinematical (radio) definition CASA <x>: veltype = 'radio' # produces channels of fixed velocity width

See CASA Docs for more options and precise definitions

Spectral Modes

CASA <x>: inp tclean

• • •

• • •		
specmode		'cube'
nchan	=	30
start	=	230
width	=	1
outframe	=	'lsrk'
veltype	=	'radio'
restfreq	=	'372.67250900G
interpolation	=	'linear'
perchanweightdensity	=	True

Spectral definition mode (mfs... # Number of channels... # First channel (e.g. start=3... # Channel width (e.g. width=2... # Spectral reference frame... # Velocity type (radio... # List of rest frequencies # Spectral interpolation... # whether to calculate weight...

GHz'

grid

Recommended:

```
gridder = 'standard'
  operations applied in image-domain to correct
  for direction-dependent effects
  use for single pointings
gridder = 'mosaic'
  direction-dependent, time-variable and baseline-
  dependent corrections during gridding in the
  visibility-domain
  use for mosaics
```

For this tutorial:

```
CASA <x>: gridder = 'standard'
```

Figure from CASA Docs

Gridder

The gridder resamples imaging weights and weighted visibilities onto a uniform *uv*

Minor-cycle clean algorithms

Recommended:

deconvolver = 'hogbom': adapted version of Hogbom Clean [Hogbom, 1974]
assumes point source model of source brightness distribution
→ most appropriate for fields of isolated point sources
compute intensive

deconvolver = 'multiscale' (or 'mtmfs'): MultiScale Clean [Cornwell, 2008]
scale-sensitive clean, can specify multiple scales
assuming sources extended, tapered 'paraboloids'
scales = []: list of scales (in pixels)
use scales up to the smaller of the largest extent of the emission
recommended to include a point source scale (pixel size 0)
smallscalebias = 0.0: value from -1 (biases towards larger scales) to 1 (biases towards smaller scales)

For this tutorial:

CASA <x>: deconvolver = 'multiscale' CASA <x>: scales = [0,5,10]

Weighting Schemes

Visibility weights alter the synthesised beam and dynamic range of output image

weighting = 'natural'

visibilities are weighted by data weights

lower rms noise, lower resolution

weighting = 'uniform'

Visibilities in same *uv* cell are weighted 'uniformly' reduces sidelobes, higher rms noise

weighting = 'briggs'

Compromise between natural & uniform **robust** parameter can be adjusted from -2 (uniformlike) to 2 (natural-like)

uvtaper = []

Applies a Gaussian taper in addition to the weighting scheme

Only outertaper → can clip inner *uv* data using uvrange

Should use with natural **or briggs with** robust = 2

Natural

Robust 0.7

Bm : 5.6 arcsec 0.1 sidelobe

Bm : 4.0 arcsec 0.05 sidelobe

Figure from CASA Docs

Uniform

Tapered Uniform

Bm : 3.2 arcsec +0.03,-0.08 sidelobe

Bm : 8.0arcsec 0.01 sidelobe

```
For this tutorial we will use:
CASA <x>: weighting = 'briggs'
CASA \langle x \rangle: robust = 0.5
CASA <x>: inp tclean
                         = 'standard'
gridder
                         = ''
   vptable
   pblimit
                        = 0.2
deconvolver
                        = 'multiscale'
   scales
   smallscalebias
                         = 0.0
   • • •
weighting
                         = 'briggs'
   robust
                            = 0.5
                         = 0
   npixels
   uvtaper
                         = []
```

• • •

Gridding options... # Name of Voltage Pattern table **#** PB gain level... # Minor cycle algorithm... = [0, 5, 10] # List of scale sizes (in pixels) # Biases the scale... # Weighting scheme # Robustness parameter

Number of pixels to determine uv-cell # uv-taper on outer baselines in uv-plane

Masks for Deconvolution

found (used to speed up the cleaning)

```
usemask = 'user'
```

this option can be selected to define regions by hand in the GUI when using interactive = True

Alternatively, the mask subparameter can be

specified as an image file, a region file, or a region string

usemask = 'auto-multithresh'

Available in CASA versions 5.1 and later Makes masking spectral line emission easier and faster

"AUTO-MULTITHRESH: A General Purpose Automasking Algorithm"

Kepley et al., 2020 PASP **132** 024505

Automasking Guide: <u>casaguides.nrao.edu/</u> index.php/Automasking_Guide

Masks are used to restrict the regions over which clean components are

Masks for Deconvolution

For this tutorial we will use: CASA <x>: usemask = 'auto-multithresh' CASA <x>: inp tclean • • • usemask = 'auto-multithresh' pbmask = 0.2sidelobethreshold = 2.0 = 4.25 noisethreshold lownoisethreshold = 1.5= 0.0 negativethreshold = 1.0minbeamfrac = 0.3 = 0.01cutthreshold = 75 growiterations dogrowprune = True = -1.0= False

• • •

- # Type of mask(s)
- # primary beam mask
- # sidelobethreshold *...
- # noisethreshold * ...
- # lownoisethreshold * ...
- # negativethreshold * ...
- # minimum beam fraction ...

Setting clean stopping thresholds

CASA <x>: inp tclean

niter

• • •

• • •

gain
threshold
nsigma
cycleniter
cyclefactor
minpsffraction
maxpsffraction
interactive

= 100000 = 0.1 = '' = 2.0 = -1 = 1.0 = 0.05 = 0.8 = True

- # Maximum number of iterations
- # Loop gain
- # Stopping threshold
- # rms-based threshold stopping
- # Max minor-cycle iterations
- # Scaling on PSF sidelobe...
- **#** PSF fraction max depth...
- **#** PSF fraction min depth...
- # Modify masks and parameters...

Summary of tclean inputs

CASA <x>: inp tclean vis = 'sis14_twhya_calibrated_flagged.ms.contsub' selectdata = True field = 'TW Hya' = '0' spw • • • datacolumn = 'data' = 'twhya n2hp43' imagename = [240, 240]imsize = '0.1arcsec' cell phasecenter = 0 • • • = 'cube' specmode = 30 nchan = 230 start width = 1 outframe = 'lsrk' = '372.67250900GHz' restfreq

• • •

Also see Imaging_2_basic_scripted.py

gridder	= 'standard'
deconvolver	<pre>= 'multiscale'</pre>
scales	= [0, 5, 10]
• • •	
weighting	= 'briggs'
robust	= 0.5
• • •	
usemask	<pre>= 'auto-multithresh'</pre>
sidelobethreshold	= 2.0
noisethreshold	= 4.25
• • •	
niter	= 100000
nsigma	= 2.0
interactive	= True

• • •

